Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities.
نویسندگان
چکیده
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)-responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100-250 μM) are detected in the intestinal microbiome.
منابع مشابه
Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities s
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiotaderived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydroca...
متن کاملMol091165 777..788
The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiotaderived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydroca...
متن کاملAryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes.
The tryptophan microbiota metabolites indole-3-acetate, indole-3-aldehyde, indole, and tryptamine are aryl hydrocarbon receptor (AhR) ligands, and in this study we investigated their AhR agonist and antagonist activities in nontransformed young adult mouse colonocyte (YAMC) cells. Using Cyp1a1 mRNA as an Ah-responsive end point, we observed that the tryptophan metabolites were weak AhR agonists...
متن کاملThe Kynurenine Pathway As a Novel Link between Allergy and the Gut Microbiome
In the past few decades, the indoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) pathway of tryptophan (TRP) metabolism has been the subject of much research in the area of immune tolerance. In this review, we aim to incorporate new findings on this pathway in relation to allergy and the gut microbiome, while providing a comprehensive overview of the pathway itself. Stimulated by i...
متن کاملIdentification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production
The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 85 5 شماره
صفحات -
تاریخ انتشار 2014